Dynamic Human Body Modeling Using a Single RGB Camera
نویسندگان
چکیده
In this paper, we present a novel automatic pipeline to build personalized parametric models of dynamic people using a single RGB camera. Compared to previous approaches that use monocular RGB images, our system can model a 3D human body automatically and incrementally, taking advantage of human motion. Based on coarse 2D and 3D poses estimated from image sequences, we first perform a kinematic classification of human body parts to refine the poses and obtain reconstructed body parts. Next, a personalized parametric human model is generated by driving a general template to fit the body parts and calculating the non-rigid deformation. Experimental results show that our shape estimation method achieves comparable accuracy with reconstructed models using depth cameras, yet requires neither user interaction nor any dedicated devices, leading to the feasibility of using this method on widely available smart phones.
منابع مشابه
People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces
Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...
متن کاملExploiting Random RGB and Sparse Features for Camera Pose Estimation
We address the problem of estimating camera pose relative to a known scene, given a single RGB image. We extend recent advances in scene coordinate regression forests for camera relocalization in RGB-D images to use RGB features, enabling camera relocalization from a single RGB image. Furthermore, we integrate random RGB features and sparse feature matching in an efficient and accurate way, bro...
متن کاملStaticFusion: Background Reconstruction for Dense RGB-D SLAM in Dynamic Environments
In this paper we propose a method for robust dense RGB-D SLAM in dynamic environments which detects moving objects and simultaneously reconstructs the background structure. Dynamic environments are challenging for visual SLAM as moving objects can impair camera pose tracking and cause corruptions to be integrated into the map. While most methods employ implicit robust penalizers or outlier filt...
متن کاملEstimation of Human Orientation using Coaxial RGB-Depth Images
Estimation of human orientation contributes to improving the accuracy of human behavior recognition. However, estimation of human orientation is a challenging task because of the variable appearance of the human body. The wide variety of poses, sizes and clothes combined with a complicated background degrades the estimation accuracy. Therefore, we propose a method for estimating human orientati...
متن کاملDetecting and tracking people in real time with RGB-D camera
Wepropose a novel approach to automatic detection and tracking of people taking different poses in cluttered and dynamic environments using a single RGB-D camera. The original RGB-D pixels are transformed to a novel point ensemble image (PEI), and we demonstrate that human detection and tracking in 3D space can be performed very effectively with this new representation. The detector in the firs...
متن کامل